RGB Image

(a) Depth maps provide an efficient representation of the scene geometry but are incomplete.

(b) We propose predicting occluded surfaces using viewer-centered, multi-layer depth maps.

(c) We introduce an epipolar transformer network that makes view-based predictions from
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virtual viewpoints.

3D Scene Reconstruction with Multi-layer Depth and Epipolar Feature Transformers
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Fully convolutional depth-based 3D scene geometry prediction and completion
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Feature Maps (232 channels) Geometry Virtual View Scene
Virtual view transformation Overview of our system for reconstructing a complete 3D scene from a single RGB image. We first predict a multi-layer depth map that encodes the depths of front and

and surface reconstruction

view, where the orthographic heights of observed surfaces are predicted.

Results on SUNCG (PBRS renderings):
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Scene surface coverage (recall) of ground truth depth layers with a 5cm threshold.
Our representation covers 93% of the scene geometry inside the viewing frustum.
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While room envelopes (Ds) typically have a very simple shape, the prediction of occluded
structure (D, ,) behind visible object surfaces (D;) is more challenging.
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Results on NYUv2:
Input
B

To reconstruct 3D surfaces from
predicted depth images, we
triangulate point cloud vertices
that correspond to a
2X2 neighborhood in
Image space.

e

back object surfaces as seen from the input camera. The epipolar feature transformer network then transfers CNN features from the input view to a virtual overhead

Reconstruction from synthetic and real-world images

Results on ScanNet:
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Tulsiani et al. (2018) Tulsiani et al. (2018)

We quantitatively evaluate the
synthetic-to-real transfer of

3D scene geometry on the ScanNet dataset.
Our network model is trained entirely on
synthetically generated images.

Precision Recall
D1,2’3’4,5 & Overhead 0.221 0.358
Tulsiani et al. 0.132 0.191

Voxelization on SUNCG:
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Comparison to object detection-based approach

Object-based compositional scene reconstruction is sensitive to detection and pose estimation errors.
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Surface precision-recall evaluation
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We uniformly sample points on

Precision and recall of scene geometry as a function of match distance threshold on SUNCG surface of the ground truth mesh
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Left: Accuracy of different model layers evaluated on the whole scene. Dashed lines are the performance
bounds provided by ground-truth depth layers.

Right: Accuracy of our model relative to the state-of-the-art, evaluated on objects only.



