3D Scene Reconstruction with Multi-layer Depth and Epipolar Transformers

to appear, ICCV 2019

Daeyun Shin' Zhile Ren² Erik Sudderth¹ Charless Fowlkes¹

Goal: 3D scene reconstruction from a single RGB image

RGB Image

3D Scene Reconstruction (SUNCG Ground Truth)

Pixels, voxels, and views: A study of shape representations for single view 3D object shape prediction (CVPR 18. Shin, Fowlkes, Hoiem)

Question: What effect does shape representation have on prediction?

CVPR 18

Coordinate system is an important part of shape representation

Synthetic training data

Top: RGB training images generated using RenderForCNN [3]. Our RGB dataset consists of 2.4M renderings of 34,000 3D CAD models from 12 object categories in ShapeNet.

Surfaces vs. voxels for 3D object shape prediction

CVPR 18

Question: What effect does shape representation have on prediction?

Network architecture for surface prediction

CVPR 18

Experiments

- Three difficulty settings (how well does the prediction generalize?)
 - Novel view: new view of model that is in training set
 - Novel model: new model from a category that is in training set
 - Novel category: new model from a category that is not in the training set
- Evaluation metrics: Mesh surface distance, Voxel IoU, Depth L1 error
- Same procedure applied in all four cases.

What effect does **coordinate system** have on prediction?

Viewer-centered vs. Object-centered

CVPR 18 What effect does **shape representation** have on prediction?

Voxels vs. multi-surface

Surface distance (mean, lower is better)

Inspiring examples from 3D-R2N2's Supplementary Material

Input

Multi-surface Pred.

	* * *	Viewer-centered	*
	• • •	- • •	
	4 *	Viewer-centered	
	110	• •	
APPENDIN		Viewer-centered	1.000
		- • •	
A	11	Viewer-centered	

Shape representation is important in learning and prediction.

• Viewer-centered representation generalizes better to difficult input, such as, novel object categories.

• 2.5D surfaces (depth and segmentation) tend to generalize better than voxels and predicts higher fidelity shapes (thin structures)

Viewer-centered vs. Object-centered: Human vision

- Tarr and Pinker ¹: Found that human perception is largely tied to viewer-centered coordinate, in experiments on 2D symbols
- McMullen and Farah²: Object-centered coordinates seem to play more of a role for familiar exemplars, in line drawing experiments.
- We do not claim our computational approach has any similarity to human visual processing.

[1]: M. J. Tarr and S. Pinker. *When does human object recognition use a viewer-centered reference frame?* Psychological Science, 1(4):253–256, 1990

[2]: P. A. McMullen and M. J. Farah. *Viewer-centered and object-centered representations in the recognition of naturalistic line drawings.* Psychological Science, 2(4):275–278, 1991.

Follow-up work (Tatarchenko et al., CVPR 19):

What Do Single-view 3D Reconstruction Networks Learn?

Maxim Tatarchenko^{*1}, Stephan R. Richter^{*2}, René Ranftl², Zhuwen Li², Vladlen Koltun², and Thomas Brox¹

¹University of Freiburg ²Intel Labs

- They observe that SoA single-view 3D object reconstruction methods actually perform image classification, and retrieval performance is just as good.
- Following our CVPR 18 work, they recommend the use of viewer-centered coordinate frames.

Follow-up work (Zhang et al., NIPS 18 oral):

Learning to Reconstruct Shapes from Unseen Classes

Xiuming Zhang*	Zhoutong Zhang*	Chengkai Zhang
MIT CSAIL	MIT CSAIL	MIT CSAIL
Joshua B. Tenenbaum	William T. Freeman	Jiajun Wu
MIT CSAIL	MIT CSAIL, Google Research	MIT CSAIL

- Zhang et al. performs single-view reconstruction of objects in novel categories.
- Their viewer-centered approach achieves SoA results.
- Following our CVPR 18 work, they experiment with both object-centered and viewer-centered models and validate our findings.

How can we extend viewer-centered, surface-based object representations to **whole scenes**?

Background: Typical monocular depth estimation pipeline

2.5D in relation to 3D

- 3D requires predicting **both** visible and occluded surfaces!

Multi-layer Depth

Synthetic dataset

CAD model of 3D Scene (SUNCG Ground Truth, CVPR 17)

RGB Rendering

Physically-based rendering (PBRS, CVPR 17)

Learning Target:

Object First-hit Depth Layer

"Traditional depth image with segmentation"

Learning Target:

Object Instance-exit Depth Layer

"Back of the first object instance"

D_5

Learning Target:

Room Envelope Depth Layer

Multi-layer Surface Prediction

Input RGB Image

Encoder-decoder

Predicted Multi-layer Depth and Semantic Segmentation

Multi-layer Surface Prediction

Input RGB Image

Multi-layer Depth Prediction and Segmentation

Surface Reconstruction from multi-layer depth

3D scene geometry from depth (2.5D)

- How much geometric information is present in a depth image?

RGB image (2D)

2.5D depth

Mesh representation of a synthetically generated depth image (SUNCG).

Epipolar Feature Transformers

Multi-layer is not enough. Motivation for multi-view prediction

Multi-view prediction from a single image: **Epipolar Feature Transformer Networks**

(a) **3D volume inference** through multi-layer depth images

(b) **Input** image and **transformed** color features using \overline{D}_1 and \overline{D}_2 .

Multi-view prediction from a single image: **Epipolar Feature Transformer Networks**

(a) **3D volume inference** through multi-layer depth images

(b) **Input** image and **transformed** color features using \overline{D}_1 and \overline{D}_2 .

Transformed Virtual View Features

Height Map Prediction

Ground Truth

L1 Error Map
Multi-layer Multi-view Inference

Frontal Multi-layer Prediction

Frontal View Surface Reconstruction

Input Image

Height Map Prediction

Virtual View Surface Reconstruction

Network architecture for multi-layer depth prediction

Network architecture for multi-layer semantic segmentation

Network architecture for virtual camera pose proposal

Network architecture for virtual view surface prediction

Network architecture for virtual view semantic segmentation

Reconstructed Virtual View Scene

Predicted Virtual View

Geometry

Transformed Virtual View Feature Maps (232 channels)

Layer-wise cumulative surface coverage

Table 1: Scene surface coverage (recall) of ground truth depth layers with a 5cm threshold. Our predictions cover 93% of the scene geometry inside the viewing frustum.

Results

3D Reconstruction

Input View / Alternate viewpoint

Input View / Alternate viewpoint

Previous state-of-the-art based on **object detection** and **volumetric** object shape prediction

- CVPR 2018
 - "Factoring Shape, Pose, and Layout from the 2D Image of a 3D Scene" by **Tulsiani** et al.
 - 3D scene geometry prediction from a single RGB image

Object-based reconstruction is sensitive to detection and pose estimation errors

Our viewer-centered, end-to-end scene surface prediction

Object-detection-based state of the art (Tulsiani et al., CVPR 18)

Results on real-world images: object detection error and geometry

Results on real-world images

Results on real-world images

Quantitative Evaluation Metric

Predicted 3D Mesh

Surface Coverage Precision-Recall

Ground Truth 3D Mesh

"Inlier" Threshold: ◄-->

Precision

Recall

Our multi-layer, virtual-view depths vs. Object detection based state-of-the-art, 2018

Layer-wise evaluation

Top-down virtual-view prediction improves both precision and recall

	Precision	Recall
$D_{1,2,3,4}$	0.499	0.417
$D_{1,2,3,4}$ & Overhead	0.519	0.457

(Match threshold of 5cm)

Synthetic-to-real transfer of 3D scene geometry on ScanNet

 $D_{1,2,3,4,5}$ & Overhead

Tulsiani et al. [43]

We measure recovery of true object surfaces and room layouts within the viewing frustum (threshold of 10cm).

We project the center of each voxel into the input camera, and the voxel is marked occupied if the depth value falls in the first object interval (D1, D2) or the occluded object interval (D3, D4).

High resolution voxels

Our fully convolutional, viewer-centered inference of 3D scene geometry

High resolution voxels

High resolution voxels

High resolution voxels

Input Image

High resolution voxels

 Visible
 Image: Semantic Segmentation

Output

High resolution voxels

Input Image

High resolution voxels

Input Image

High resolution voxels

Output

High resolution voxels
Voxelization of multi-layer depth maps

High resolution voxels

Supplemental Video

Our approach: Multi-layer Depth Representation

Conclusion

- Multi-layer and virtual-view prediction from a single image

- Surface-based accuracy evaluation

Synthetic-to-real transfer of 3D scene geometry prediction, evaluated quantitatively

Geometric comparison with detection-based voxel prediction methods

Code and dataset coming soon. Follow on Twitter for updates!

