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Goal: 3D scene reconstruction from a single RGB image

RGB Image 3D Scene Reconstruction
(SUNCG Ground Truth)



Pixels, voxels, and views: A study of shape representations
for single view 3D object shape prediction  (CVPR18. Shin, Fowlkes, Hoiem)

Question: What effect does shape representation have on prediction?
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CVPR 18

Coordinate system is an important part of shape representation
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CVPR 18

Synthetic training data
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Top: RGB training images generated using RenderForCNN [3]. Our
RGB dataset consists of 2.4M renderings of 34,000 3D CAD
models from 12 object categories in ShapeNet.




CVPR 18

Surfaces vs. voxels for 3D object shape prediction
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CVPR 18

Question: What effect does shape representation have on prediction?
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CVPR 18

Network architecture for surface prediction
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CVPR 18

Experiments

* Three difficulty settings (how well does the prediction generalize?)
— Novel view: new view of model that is in training set

— Novel model: new model from a category that is in training set
— Novel category: new model from a category that is not in the training set

 Evaluation metrics: Mesh surface distance, Voxel loU, Depth L1
error

« Same procedure applied in all four cases.



CVPR 18
What effect does coordinate system have on prediction?

Viewer-centered vs. Object-centered

Voxel loU (mean, higher is better) Depth error (mean, lower is better)
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CVPR 18
What effect does shape representation have on prediction?

Voxels vs. multi-surface

Voxel loU (mean, higher is better) Surface distance (mean, lower is better)
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Object-centered prediction (3D-R2N2)

Inspiring examples from 3D-R2N2's Supplementary Material



Input Multi-surface Pred.
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Shape representation is important in learning and prediction.

* Viewer-centered representation generalizes better to difficult input,
such as, novel object categories.

« 2.5D surfaces (depth and segmentation) tend to generalize better than
voxels and predicts higher fidelity shapes (thin structures)

2.5D segmentation, depth



Viewer-centered vs. Object-centered: Human vision

- Tarr and Pinker ': Found that human perception is largely tied to viewer-centered coordinate,
in experiments on 2D symbols

- McMullen and Farah 2: Object-centered coordinates seem to play more of a role for familiar
exemplars, in line drawing experiments.

- We do not claim our computational approach has any similarity to human visual processing.
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[1]: M. J. Tarr and S. Pinker. When does human object recognition use a viewer-centered reference frame?
Psychological Science, 1(4):253-256, 1990

[2]: P. A. McMullen and M. J. Farah. Viewer-centered and object-centered representations in the recognition of
naturalistic line drawings. Psychological Science, 2(4):275-278, 1991.



Follow-up work (Tatarchenko et al., CVPR 19):

What Do Single-view 3D Reconstruction Networks Learn?

Maxim Tatarchenko*!, Stephan R. Richter*2, René Ranftl?, Zhuwen Li?,
Vladlen Koltun?, and Thomas Brox!

'University of Freiburg  ?Intel Labs

They observe that SoA single-view 3D object reconstruction methods actually
perform image classification, and retrieval performance is just as good.

Following our CVPR 18 work, they recommend the use of viewer-centered
coordinate frames.



Follow-up work (Zhang et al., NIPS 18 oral):

Learning to Reconstruct Shapes from Unseen Classes

Xiuming Zhang* Zhoutong Zhang* Chengkai Zhang
MIT CSAIL MIT CSAIL MIT CSAIL
Joshua B. Tenenbaum William T. Freeman Jiajun Wu
MIT CSAIL MIT CSAIL, Google Research MIT CSAIL

- Zhang et al. performs single-view reconstruction of objects in novel categories.
- Their viewer-centered approach achieves SoA results.

- Following our CVPR 18 work, they experiment with both object-centered and
viewer-centered models and validate our findings.



How can we extend viewer-centered,
surface-based object representations
to whole scenes?



Background: Typical monocular depth estimation pipeline

Viewer-centered
visible geometry
inference
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2.5D in relation to 3D

Z

Input RGB Image Predicted Depth Predicted Depth as 3D mesh Ground Truth 3D Mesh

- 3D requires predicting both visible and occluded surfaces!



Multi-layer Depth



Synthetic dataset

/

CAD model of 3D Scene RGB Rendering
(SUNCG Ground Truth, CVPR 17) Physically-based rendering

(PBRS, CVPR 17)
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Learning Target:

Object First-hit Depth Layer

“Traditional depth image with segmentation”



Learning Target:

Object Instance-exit Depth Layer

“Back of the first object instance”



Learning Target:

Room Envelope Depth Layer




Multi-layer Surface Prediction
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Multi-layer Surface Prediction
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Surface Reconstruction from multi-layer depth



3D scene geometry from depth (2.5D)

- How much geometric information is present in a depth image?

RGB image (2D) 2.5D depth

Mesh representation of a synthetically
generated depth image (SUNCG).




Epipolar Feature Transformers



Multi-layer is not enough. Motivation for multi-view prediction

RGB Image

2.5D (objects only) Multiple layers of 2.5D Multiple views of 2.5D
Including a top-down view

& &

Ground truth depth
visualization




Multi-view prediction from a single image:
Epipolar Feature Transformer Networks

Epipolar Virtual View Prediction

Virtual view transformation

Virtual viewpoint proposal ‘ and surface reconstruction
(to t, t.. 6, 0)

Viewer-centered
surface reconstruction

. BEY

(b) Input image and transformed color features using D, and D, .



Multi-view prediction from a single image:
Epipolar Feature Transformer Networks

Epipolar Virtual View Prediction

Virtual view transformation

Virtual viewpoint proposal ‘ and surface reconstruction
(to t, t.. 6, 0)

Viewer-centered
surface reconstruction

. BEY

(b) Input image and transformed color features using D, and D, .



Virtual View Surface Prediction
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Transformed Virtual View Features
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Frontal Multi-layer Prediction

Frontal View Surface Reconstruction

Input Image

Height Map Prediction Virtual View Surface Reconstruction



Network architecture for multi-layer depth prediction
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Network architecture for multi-layer semantic segmentation
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Network architecture for virtual camera pose proposal
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Network architecture for virtual view surface prediction
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Network architecture for virtual view semantic segmentation
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Layer-wise cumulative surface coverage

D ‘D1,2 ‘D1,2,3 ‘Dl..4 ‘Dl..5 ‘D1..5 +Ovh.
0.237 |0427 [0.450 [0.480 [0.924  |0.932

Table 1: Scene surface coverage (recall) of ground truth
depth layers with a Scm threshold. Our predictions cover
93% of the scene geometry inside the viewing frustum.



Results



. Visible Surface Prediction

. Occluded Surface Prediction

Input View / Alternate viewpoint



. Visible Surface Prediction

. Occluded Surface Prediction

Input View / Alternate viewpoint



Previous state-of-the-art based on object detection and
volumetric object shape prediction

-  CVPR 2018

- "Factoring Shape, Pose, and Layout from the 2D Image of a 3D Scene" by Tulsiani et al.

- 3D scene geometry prediction from a single RGB image




Object-based reconstruction is sensitive to detection and pose estimation errors

. Visible Surface Prediction

. Occluded Surface Prediction

Ground Truth (SUNCG)

. Tulsiani et al. (2018)
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Input RGB Image

" Object pose\
estimation error

Our viewer-centered, end-to-end Object-detection-based state of the art
scene surface prediction (Tulsiani et al., CVPR 18)



Results on real-world images: object detection error and geometry

iani, 2018]
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Results on real-world images




Results on real-world images
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Quantitative Evaluation Metric

Surface Coverage
Precision-Recall

Predicted 3D Mesh Ground Truth 3D Mesh

. b j “Inlier” Threshold:  |+—]

Precision Recall



. Predicted Surface

. GT Surface from SUNCG



Surface Coverage
Precision-Recall Metrics

. Predicted Surface

. GT Surface from SUNCG

i.i.d. point sampling on predicted mesh
(with constant density p = 10000 points per
unit area, m? in real world scale)



Surface Coverage
Precision-Recall Metrics

. Predicted Surface

/ . GT Surface from SUNCG

—— Closest distance from point to surface, within threshold

Precision =
Number of points within threshold (©)

Total number of sampled points (@ + )

“Inlier” Threshold: |+—]



Surface Coverage
Precision-Recall Metrics

. Predicted Surface

. GT Surface from SUNCG



Surface Coverage
Precision-Recall Metrics

. Predicted Surface

. GT Surface from SUNCG

i.i.d. point sampling on GT mesh
(with constant density p = 10000 points per
unit area, m? in real world scale)



Surface Coverage
Precision-Recall Metrics

. Predicted Surface

. GT Surface from SUNCG

—— Closest distance from point to surface, within threshold

Recall =
Number of points within threshold (©)

Total number of sampled points (@ + )

“Inlier” Threshold: |+—]



Our multi-layer, virtual-view depths
vs. Object detection based state-of-the-art, 2018
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Layer-wise evaluation

Inliers
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Top-down virtual-view prediction improves both precision and recall

Precision Recall
D123.4 0.499 0.417
D 2 3.4 & Overhead 0.519 0.457

(Match threshold of 5cm)



Synthetic-to-real transfer of 3D scene geometry on ScanNet

Real-world Input ScanNet Ground Truth Ours

i

Tulsiani et al. (2018

Precision Recall
D1 23,45 & Overhead 0.221 0.358
Tulsiani ef al. [43] 0.132 0.191

We measure recovery of true object surfaces and room layouts within the viewing frustum
(threshold of 10cm).



Voxelization of multi-layer depth maps

We project the center of each voxel into the input camera, and the voxel is marked occupied if the depth value
falls in the first object interval (D1, D2) or the occluded object interval (D3, D4).
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High resolution voxels

Our fully convolutional, viewer-centered inference of 3D scene geometry



Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Voxelization of multi-layer depth maps
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Supplemental Video

Our approach:  Multi-layer Depth Representation



http://www.youtube.com/watch?v=0V8BVoSc3UM

Con Cl usion Code and dataset coming soon.

Follow on Twitter for updates!

- Multi-layer and virtual-view prediction from a single image
, v @DaeyunShin
- Surface-based accuracy evaluation
- Synthetic-to-real transfer of 3D scene geometry prediction, evaluated quantitatively
Results on ScanNet:
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